Те изображения звезд, что находятся за переделами кольца Эйнштейна (назовем их первичными), двигаются ожидаемым образом: постепенно слева направо, однако, приближаясь к черной дыре, они отклоняются от нее. (Можете ответить, почему они отклоняются от дыры, а не к ней?)
Изображения же из второй пары, лежащие внутри кольца Эйнштейна, движутся весьма странным образом: они будто выходят из-за правого края тени, движутся наружу, но, не выходя за кольцо Эйнштейна, плавно поворачиваются к левой стороне тени и приходят к левому ее краю.
Понять, что здесь происходит, можно, обратившись к схеме на рис. 8.3. Правый луч проходит вблизи черной дыры, и правое изображение звезды оказывается рядом с тенью. Раньше, когда камера находилась левее, правый луч проходил еще ближе к дыре (чтобы сильнее изогнуться и достичь камеры), поэтому тогда правое изображение было еще ближе к тени. Левый же луч, напротив, раньше проходил довольно далеко от тени, оставаясь почти прямым, и формировал изображение звезды на отдалении от дыры.
А теперь, если вам все понятно, подумайте, как изображения, показанные на рис. 8.4, станут перемещаться далее.
Линзирование быстровращающейся черной дыры – Гаргантюа
Пространственный вихрь, образующийся из-за огромной скорости вращения Гаргантюа, влияет на гравитационное линзирование. Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше.
Для Гаргантюа (рис. 8.5) при движении камеры проявляются два кольца Эйнштейна, обозначенных на рисунке фиолетовыми замкнутыми кривыми. Снаружи внешнего кольца звёзды «движутся» вправо (в частности, вдоль двух пар красных кривых), так же как и для невращающейся черной дыры на рис. 8.4. Однако у заднего края тени пространственный вихрь сжимает поток движения в узкие полосы, которые довольно резко изгибаются у экватора, и ускоряет его. Также вихрь образует в потоке «водовороты» (замкнутые красные кривые).
Рис. 8.5. Эффект перетекания звезд рядом с быстровращающейся черной дырой, подобной Гаргантюа, «вид через камеру». В этой модели студии Double Negative дыра вращается со скоростью в 99,9 процента от предельной, а камера движется по круговой экваториальной орбите, окружность которой в шесть раз превышает окружность горизонта. См. видеоролик на странице Interstellar.withgoogle.com
Вторичное изображение каждой звезды появляется в области между кольцами Эйнштейна, и циркулирует вдоль замкнутой кривой (пример – две желтые кривые), двигаясь при этом в направлении, противоположном красным потокам снаружи внешнего кольца.
Здесь есть две особенные звезды, для которых гравитационное линзирование не действует. Одна из них расположена прямо над северным полюсом Гаргантюа, другая – прямо под южным. Это аналоги Полярной звезды, которая расположена прямо над Северным полюсом Земли. Я нарисовал пятиконечные звездочки рядом с первичными (красная звездочка) и вторичными (желтая) изображениями полярных звезд Гаргантюа. С Земли кажется, будто все звезды циркулируют вокруг Полярной звезды – поскольку мы вращаемся вместе с Землей. Аналогично по мере движения камеры по орбите вокруг дыры все первичные изображения звезд рядом с Гаргантюа циркулируют вокруг первичных изображений полярных звезд, но пути их движения (например, две замкнутые красные кривые) сильно искажены пространственным вихрем и гравитационным линзированием. Тем же образом вторичные изображения звезд циркулируют вокруг вторичных изображений полярных звезд (например, вдоль двух желтых кривых).
Почему в случае невращающейся черной дыры (рис. 8.4) кажется, что вторичные изображения звезд возникают из-за тени черной дыры, огибают ее и возвращаются обратно к тени, а не циркулируют вдоль замкнутых кривых, как в случае Гаргантюа (рис. 8.5)? На самом деле они все же циркулируют вдоль замкнутых кривых, но внутренний край этих кривых находится так близко к краю тени, что его невозможно увидеть. Вращение Гаргантюа завихряет пространство, и этот вихрь сдвигает внутреннее кольцо Эйнштейна наружу, проявляя его и показывая полный путь движения вторичных изображений (желтые кривые на рис. 8.5).
В пределах внутреннего кольца Эйнштейна движения узора звезд еще более сложны. Звезды в этой области являются изображениями третьего и более высоких порядков для всех звезд во Вселенной – звезд, первичные изображения которых видны снаружи внешнего кольца Эйнштейна, а вторичные – между внутренним и внешним кольцами.
На рис. 8.6 выделено пять участков экваториальной плоскости Гаргантюа, сама Гаргантюа показана черным, орбита камеры – фиолетовым пунктиром, а луч света – красным. Этот луч формирует для камеры изображение звезды, на которую указывает синяя стрелка. Камера движется вокруг Гаргантюа против часовой стрелки.
Рис. 8.6. Лучи света, формирующие изображения звезд, на которые указывают синие стрелки (Модель Double Negative, та же, что на рис. 8.1 и 8.5.)
Последовательно изучая эти рисунки, можно многое понять о гравитационном линзировании. Имейте в виду: действительное направление к звезде – вверх и вправо (внешние концы красных лучей). Стрелка, идущая от значка камеры, указывает на изображение звезды. Десятеричное изображение находится очень близко к левому краю тени, а правое вторичное изображение – рядом с правым краем; сравнивая направления камеры для этих изображений, можно увидеть, что тень покрывает примерно 150 градусов направления вверх, несмотря на то что действительное направление от камеры к центру Гаргантюа – влево и вверх. Эффект гравитационного линзирования сдвинул тень относительно действительного направления к Гаргантюа.
Визуальные эффекты: черная дыра и червоточина
Крис хотел, чтобы Гаргантюа выглядела так же, как выглядит вблизи настоящая черная дыра, поэтому он попросил Пола проконсультироваться со мной. Пол свел меня с командой по созданию визуальных эффектов из студии Double Negative (Лондон).
Я стал тесно сотрудничать с Оливером Джеймсом, главным программистом. Мы с Оливером общались по телефону и по «Скайпу», обменивались электронными письмами и файлами, а также встречались лично в Лос-Анджелесе и его лондонском офисе. У Оливера высшее образование в области оптики, ядерной физики и теории относительности, так что мы с ним общались на одном языке.
Некоторые из моих коллег-физиков уже делали компьютерные модели, показывающие, что будет видно при полете вокруг черной дыры и даже при падении в нее. Мастерами в этом слывут Ален Риасуэло из Парижского астрофизического института и Эндрю Гамильтон из Колорадского университета в Боулдере. Эндрю – автор фильмов о черных дырах, которые показывают в планетариях по всему миру, а Ален занимался моделированием черных дыр, которые вращаются очень-очень быстро, как Гаргантюа.
Сначала я планировал вывести Оливера на Алена и Эндрю, чтобы они помогли ему с нужными данными. Несколько дней я мучился сомнениями и в конце концов передумал.
В течение полувековой карьеры в физике я вложил много усилий в собственные исследования, а также в исследования студентов, которых я курировал. Почему бы мне для разнообразия не сделать что-то просто ради интереса, хоть другие и делали это до меня? Вот я и занялся моделированием сам, о чем ничуть не пожалел. Заодно, к моему удивлению, это привело к новым (пусть и не самым значительным) открытиям.
С помощью эйнштейновской теории относительности, а также опираясь на работы других ученых (в особенности Брендона Картера из Лаборатории Вселенной и теорий о ней (Парижская обсерватория) и Жанны Левин из Колумбийского университета), я вывел необходимые Оливеру уравнения. Эти уравнения описывали траектории лучей света, исходящих из некоего источника, например далекой звезды, проникающих через искривленные время и пространство Гаргантюа и достигающих камеры. Затем на основе этих траекторий мои уравнения рассчитывали изображение для камеры, учитывая не только источники света и искривленные пространство и время Гаргантюа, но также и движение камеры вокруг черной дыры.
Сформулировав уравнения, я закодировал их с помощью удобной компьютерной системы Mathematica. Я сравнил изображения, созданные моим программным кодом, с изображениями Алена Риасуэло и с радостью убедился, что в целом они совпадают. Затем я отослал плоды моих трудов Оливеру в Лондон.
Мой код был очень медленным и производил расчеты с низкой точностью. В задачу Оливера входило создать на основе моих уравнений программу, которая генерировала бы IMAX-изображения сверхвысокого качества, подходящие для фильма.